Отбор корней в тригонометрических уравнениях

Практика приемных экзаменов в вузы показывает, что при решении тригонометрических уравнений абитуриенты нередко затрудняются как в выборе способа решения уравнения, так и при отборе его корней.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений специфична. Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнения. Запись ответа тригонометрического уравнения часто связана с понятиями объединения и пересечения множеств. Обычно при решении таких уравнений получают серии корней, и в окончательном варианте ответ записывают в виде объединения этих серий. Но как быть, если эти серии пересекаются? Надо ли исключать повторяющиеся корни решения или этого можно не делать?

С понятием пересечения множеств связан и еще один важный вопрос: в ответе не должно быть значений переменной, при которых выражения в левой или правой частях уравнения не определены. Такие значения надо исключить. Для этого надо уметь находить пересечение различных серий.

В предлагаемой работе на конкретных примерах рассматриваются различные способы и приемы при выборе ответа. Надеемся, что данная работа поможет учителям старших классов и самим учащимся при подготовке к вступительным экзаменам в вузы.

 1. Отбор чисел на тригонометрическом круге

Проблему отбора корней, отсеивания лишних корней при решении тригонометрических уравнений часто можно решить с помощью изображения чисел на тригонометрическом круге. В ряде случаев этот прием, на наш взгляд, более наглядный и убедительный.

Пример 1. cos x + cos 2x – cos 3x = 1.

Решение.

cos x – cos 3x – (1 – cos 2x) = 0,

2sin x sin 2x – 2sin2 x = 0,

2sin x (sin 2x – sin x) = 0,

.

Из рис. 1 видно, что серия x3(*) включает в себя один из корней серии x1(·).

Ответ:

Пример 2. tg x + tg 2x – tg 3x = 0.

Решение.

Серия x2(*) не удовлетворяет ОДЗ (рис. 2). Серия x1(o) входит в серию x3(·), поэтому ответ можно записать одной формулой: 

Пример 3.

Решение.

sin 4x cos x + sin 2x cos 7x = 0,

sin 2x (2cos 2x cos x + cos 7x) = 0,

sin 2x (cos 3x + cos x + cos 7x) = 0,

sin 2x (cos 3x + 2cos 4x cos 3x) = 0,

sin 2x cos 3x (1 + 2cos 4x) = 0,

Объединяя все три серии корней, ответ можно записать так:

Пример 4. sin2 x + sin2 2x = sin2 3x.

Решение.

– (cos 2x + cos 4x) + 1 + cos 6x = 0,

– 2cos 3x cos x + 2cos2 3x = 0,

cos 3x (cos 3x – cos x) = 0,

cos 3x sin 2x sin x = 0,

Серия корней x2 содержится в серии x1 и x3, в чем легко убедиться, изобразив их различными точками на круге, поэтому

ответ:

Пример 5. sin x + sin 7x – cos 5x + cos (3x – 2p) = 0.

Решение.

sin x + sin 7x – cos 5x + cos 3x = 0,

2sin 4x cos 3x + 2sin 4x sin x = 0,

sin 4x (cos 3x + sin x) = 0,

Серия x2 содержится в серии корней x1, а на круге (рис. 4) изобразим точками серии x1(·) и x3(О), которые не совпадают.

Пример 6. ctg 2x + 2ctg x – tg 2x = sin 5x.

Решение.

ОДЗ

Учитывая ОДЗ, получим

Пример 7.

Решение.

Иногда случается, что часть серии входит в ответ, а часть нет.
Нанесем на тригонометрический круг (рис. 6) все числа серии
и выбросим корни, удовлетворяющие условию

Оставшиеся решения из серии x1 можно объединить в формулу

2. Отбор корней в тригонометрическом уравнении алгебраическим способом

Изображение корней на тригонометрическом круге не всегда удобно, когда период меньше 2p.

Пример 8. sin2 2x + sin2 3x + sin2 4x + sin2 5x = 2.

Решение.

cos 4x + cos 6x + cos 8x + cos 10x = 0,

2cos 5x cos x + 2cos 9x cos x = 0,

cos x cos 2x cos 7x = 0.

«Период» серий равен p. Рассмотрим те корни из серий x1, x2, x3, которые попадают в промежуток [0; p]. Это будут:

Сразу видно, что серия x1 содержится в серии x3, а серии x2 и x3 не пересекаются. Значит, ответ можно записать в виде .

Способ алгебраический. Общим знаменателем в сериях x1 и x2 будет 4:

 

Если x1 = x2, то 2 + 4k = 1 + 2l, но слева – четное число, а справа – нечетное. Равенство невозможно, серии x1 и x2 не пересекаются. Аналогично получаем, что серии х3 и х2 тоже не пересекаются, а вот для серий x1 и x3 получаются формулы

Из равенства 7 + 14k = 1 + 2m получаем m = 7k + 3. Это означает, что для всякого k найдется целое m такое, что будет выполняться равенство 7 + 14k = 1 + 2m, т. е. всякий корень из серии x1 встретится и в серии x3, поэтому серия x1 содержится в серии x3, и в ответе писать ее не надо.

При решении некоторых тригонометрических уравнений их заменяют эквивалентной системой уравнений, а затем находят пересечение множеств решений. Эти пересечения часто найти легко. Но иногда для нахождения решений необходимо решать диафантово уравнение (ax + by = c).

Пример 9.

Решение.

В данном случае сделать отбор решений на тригонометрическом круге неудобно, так как периоды серий разные. Найдем такие целые k, при которых x = p + 2pk имеет посторонние корни, удовлетворяющие условию x 3pn, n О Z. Пусть p + 2pk = 3pn; 1 + 2k = 3n. Отсюда n = 2m + 1 Ю k = 3m + 1. Итак, посторонние корни в серии x = p + 2pk будет при k = 3m + 1, m О Z.

Ответ: {x = p + 2pk, где k 3m + 1, m О Z} =   {x = p + 6pm, x = 3p + 6pm, m О Z}.

Пример 10. cos 7x (sin 5x – 1) = 0.

Решение.

Пересекаются ли эти серии? Из равенства

следует 5k = 14n + 1. Выразим ту неизвестную, коэффициент при которой меньше по абсолютной величине:

– целое число.

Пусть

Ответ можно записать в виде

.

Пример 11.

Решение.

Поскольку наибольшее значение функции y = cos t равно 1, уравнение равносильно системе

Решением уравнения является пересечение серий x1 и x2, т. е. нам надо решить уравнение

Из него получаем уравнение, имеющее решение k = 8t, n = 3t.

Ответ: {8pt, t О Z}.

Пример 12.

Решение.

Решением уравнения является пересечение серий x1 и x2;

,

где – целое число;

Ответ: x = 2p + 8pm, m О Z.

Пример 13.

Решение.

sin 2x sin 4x = sin x (sin 2x + sin 4x),

sin 2x sin 4x = 2sin x sin 3x cos x,

sin 2x sin 4x = sin 2x sin 3x,

sin 2x (sin 4x – sin 3x) = 0,

Остается проверить, лежат ли они в области x О R,

Серию x1 проверить легко: поскольку ,

а при n, кратных 8, n = 8l (l О Z), получается как раз x 2pl, вся серия x1 исключается. Сложнее обстоит дело с серией x2. Здесь надо выяснить, при каких целых k найдется такое n, что выполняется равенство ,

и исключить такие k. Последнее уравнение приводится к виду 8k + 4 = 7n, причем решать это уравнение надо в целых числах. Из него следует, что n = 4l, поскольку левая часть уравнения делится на 4. Подставляя n = 4l в уравнение, получаем 8k + 4 = 28l, откуда 2k + 1 = 7l. Далее, l должно быть нечетно, l = 2t + 1; поэтому 2k + 1 = 14t + 7, k = 7t + 3. Вот решение и получилось:

k = 7t + 3, n = 4l = 4(2t + 1) = 8t + 4.

Ответ:

3. Отбор корней в тригонометрическом уравнении с некоторыми условиями

Изложенные выше способы отбора корней в тригонометрических уравнениях не всегда применяются в чистом виде: выбор способа зависит от конкретных условий, но иногда эти способы комбинируются.

Пример 14. Найти корни уравнения sin 2x = cos x | cos x |,

удовлетворяющие условию x О [0; 2p].

Решение.

Условию cos x і 0 удовлетворяют

из серии

из серии

Наконец,

Пример 15. Найти все решения уравнения

удовлетворяющие условию

так как то

Ответ: x = 2p + 4pk, k О Z.

Пример 16. Найти все решения уравнения

принадлежащие отрезку .

Решение.

Отметим ОДЗ на тригонометрическом круге (рис. 9):

Отрезку принадлежит только один промежуток из ОДЗ, а именно .

Решим уравнение и выберем корни, принадлежащие этому промежутку:

1 + sin 2x = 2cos2 3x Ю sin 2x = cos 6x,

Из серии при n = 2 имеем

Из серии при n = 5 имеем

Пример 17.

Решение.

а) cos x і 0;

б) cos x < 0;

Ответ:

Пример 18. Найти все корни уравнения

которые удовлетворяют условию .

Решение.

10sin2 x = – cos 2x + 3 Ю 10sin2 x = 2sin2 x – 1 + 3,

Выберем корни, удовлетворяющие условию задачи. Из серии

При

при .

Аналогично выберем корни, удовлетворяющие условию задачи, из второй серии. Это будут .

Пример 19.

Решение.

sin x и cos x должны быть одинакового знака, а, учитывая первое неравенство, только при sin x > 0 и cos x > 0 система совместна. Значит, x оканчивается в первой четверти. Имеем

1 + 2sin x cos x = 4sin x cos x Ю sin 2x = 1,

Ответ:

Пример 20.

Решение.

Ответ:

Пример 21.

Решение.

а)

Но ctg x < 0. Это противоречит условию tg x > 0. Решений нет.

б)

Ответ:

.

Примеры для самостоятельного решения

   7. Найти все решения уравнения, принадлежащие указанным промежуткам:

ОТВЕТЫ

Л. Максименко,
Р. Зинченко,
г. Ангарск

TopList